Jupiter botste mogelijk ooit frontaal met een grote protoplaneet

In 2016 kwam NASA’s Juno satelliet aan bij Jupiter om te onderzoeken hoe de binnenkant van de grootste planeet van ons zonnestelsel er uit ziet. Aan de hand van zwaartekrachtmetingen kwamen we er achter dat Jupiter’s kern niet enkel uit rots en ijs bestaat, maar dat er waterstof en helium door gemengd is. Daardoor krijg je een diffuse afscheiding met de rest van de atmosfeer. Dat was niet verwacht en astronomen zochten naar een verklaring.

Een team van Zwitserse en Chinese astronomen vermoedden dat dit iets te maken had met een inslag die Jupiter ooit te verduren heeft gehad. Dus ze besloten tienduizenden computersimulaties te draaien van inslagen met objecten van uiteenlopende grootten. Ze testten daarbij verschillende soorten impacten: van schampshotten tot frontale botsingen. Daarna keken ze wat voor resultaat dit opleverde. Niet alleen voor de kern van Jupiter, maar ook of Jupiter daarna in zijn huidige vorm gevormd had kunnen worden. Wat ze leerden, was dat als Jupiter in zijn vroege bestaan botste met een grote protoplaneet, dit miljarden jaren later nog te merken zou zijn aan een diffuse kern.

Jupiterimpact2.png
Een 3D afbeelding van Jupiter voor tijdens en na de impact. (Afbeelding: Shang-Fei Liu)

Wat voor botsing moeten we aan denken? Het artikel zegt dat de botsing plaats gehad zou moeten hebben in de periode waarbij Jupiter nog slechts 10 keer de massa van de Aarde was (Jupiter is nu 318 Aarde massa’s). Een even zo zware protoplaneet zou in een frontale botsing met Jupiter gekomen kunnen zijn. Deze botsing zou de kern kunnen hebben verpulverd, waardoor je tot op de dag van vandaag geen scherpe afscheiding tussen het rots en ijs in de kern en het waterstof en helium in de atmosfeer meer hebt.

Er zal meer onderzoek nodig zijn om deze hypothese te controleren. Maar als het waar is, dan lijkt het erop dat het vroege zonnestelsel flink wat botsingen gekend heeft. Het is waarschijnlijk hoe onze maan ontstaan is, hoe Mercurius een merkwaardige metaal-rots verhouding gekregen heeft en hoe Uranus op zijn kant is gekomen. En de auteurs van het artikel denken dat een dergelijke impact ook bepaalde kenmerken van Saturnus zou kunnen verklaren.

Bronnen:

http://nccr-planets.ch/blog/2019/08/14/giant-impact-disrupted-jupiters-core/

https://www.centauri-dreams.org/2019/08/22/giant-jovian-impact-could-explain-juno-data/

https://www.nature.com/articles/s41586-019-1470-2 (paywall)

Coverafbeelding: Astrobiology Center, Japan)

Magma is misschien het antwoord op de vraag hoe de maan gevormd werd

Zelfs 50 jaar na Apollo 11 blijven er vragen over hoe de maan is ontstaan. De gangbare theorie is dat 50 miljoen jaar na de vorming van het zonnestelsel een protoplaneet ter grootte van Mars, Theia genoemd, op onze jonge planeet ingeslagen is. Als je die theorie test in een computersimulatie krijg je een maan die voornamelijk bestaat uit het materiaal van Theia. Uit 382 kilogram aan monsters die de Apollo vluchten terug brachten bleek dat de maan voornamelijk uit hetzelfde materiaal als de Aarde bestaat. Dus wat klopt er niet?

Wetenschappers uit Japan en de V.S. zeggen nu dat in de bestaande modellen een ding over het hoofd gezien is: de Aarde was in die tijd bedekt met een zee van magma, terwijl Theia al een vast object was. Na de inslag werd het magma nog meer verhit en zette het uit. Als je dat gegeven in de computersimulatie meeneemt, dan komt dat magma in een baan rond de Aarde en vormt een maan met 80% materiaal van de Aarde.

Zulke computersimulaties worden trouwens uitgevoerd in supercomputers die de trajecten van miljoenen tot miljarden deeltjes kunnen berekenen. Voor een wetenschappelijk artikel zoals deze worden bovendien vele variabelen getest om te zien of de theorie dan nog steeds stand houdt. Hierna zullen andere wetenschappers waarschijnlijk de theorie willen testen, bijvoorbeeld met monsters die met Apollo verzameld zijn.

Bron:

https://phys.org/news/2019-04-magma-key-moon-makeup.html

Credits afbeelding: Hosono, Karato, Makino en Saitoh

Ooit blijkt het water op de maan verdampt te zijn, maar waardoor is niet duidelijk

Een grote onbeantwoorde vraag in de astronomie is “waar komt het water op Aarde vandaan?” Eerst dachten we dat het van kometen kwam, want die bestaan voor een groot deel uit waterijs. Maar de Rosetta missie liet zien (m.b.v. het deuterium gehalte) dat dat niet de bron was. Asteroïden waren de tweede kandidaat. We hebben inmiddels waterrijke asteroïden gevonden, zoals Bennu, waar NASA’s OSIRIS-REx missie om draait.

Stel dat water van asteroïden afkomstig is, kwam dat dan voor of na de vorming van de maan op Aarde? De maan is waarschijnlijk ontstaan enkele tientallen miljoenen jaren na de inslag van een protoplaneet ter grootte van Mars (Theia genaamd) op de jonge Aarde. Als het water voor deze botsing bestond, dan moet je dit in gesteente van zowel de Aarde als de maan vinden. Uit onderzoek naar kleine hoeveelheden zuurstof en stikstof in maangesteente blijkt dat dit het geval te zijn. Wat leidt naar de volgende vraag: waar is het water op de maan dan gebleven?

onstaan_maan.PNG
Een tekening hoe de maan ontstaan zou kunnen zijn.

Even voor de goede orde: we hadden geen oceanen op de maan verwacht. Door gebrek aan een atmosfeer en magnetisch veld, zou die allang verdampt zijn. Maar we hadden wel veel meer water verwacht dat ingesloten raakte in gesteente. Maar het gesteente wat door Apollo meegebracht werd, is kurkdroog te noemen.

In een Europees wetenschappelijk project genaamd PRISTINE, is met grote nauwkeurigheid gekeken naar isotopen van zwaardere elementen. Waarom? Er zit zelfs zo weinig water in maangesteente, dat er lastig nauwkeurige metingen mee gedaan kunnen worden. In plaats daarvan onderzoek gedaan hebben naar relatief vluchtige stoffen als zink en kalium, die bij voldoende verhitting (denk lava) verdampen. Wat blijkt? In maangesteente bevinden zich naar verhouding meer zwaardere isotopen van deze elementen dan in Aards gesteente. Dat wijst erop dat vluchtige stoffen, zoals water, kalium en zink, in de geschiedenis van de maan in grote mate zijn verdampt (de lichtere elementen en isotopen het eerst).

Aan de hand van de isotopen kan een inschatting gedaan worden bij welke temperatuur water op de maan verdampt is. Men komt uit op 1.200 graden Celsius. Dat is veel lager dan de temperaturen die je kunt verwachten bij grote inslagen. Dus de oorzaak moet ergens anders gezocht worden. Bovendien heeft een ander wetenschappelijk team onderzoek gedaan naar monsters van Apollo 17, specifiek de laag die ontstaan is bij meteorietinslagen. En daarbij blijkt de isotopenverhouding niet verandert te zijn. Het totale onderzoek moet nog gepubliceerd worden.

We zijn dus weer een stapje dichter bij het antwoord op de vraag waar onze oceanen vandaan komen, maar het levert weer nieuwe mysteries op.

Bron:

https://horizon-magazine.eu/article/moon-s-water-where-did-it-come-and-where-did-it-all-go.html