BepiColombo heeft succesvolle passage langs Aarde tijdens corona maatregelen

Normaal gesproken worden ESA missies zoals BepiColombo geleid vanuit het vluchtleidingscentrum ESOC in Darmstadt. Maar hoe leidt je een ruimtemissie die op het punt staat dicht langs de Aarde te scheren, als je 1,5 meter afstand van elkaar moet houden? Het is bovendien een actie die je niet kunt uitstellen. De wetten van de baanmechanica wachten op niemand. Kun je een missie als BepiColombo ook leiden vanaf huis?

A_year_of_space_selfies_pillars.gif
Tijdens de flyby van BepiColombo moeten o.a. een hoop antennebewegingen worden uitgevoerd. (beelden: ESA)

ESA beseft dat een vluchtleidingscentrum met personeel met een besmettelijke ziekte ook geen goed idee is. Dus 24 maart besluit ESA dat er verregaande maatregelen nodig zijn. En dat moet liefst ook een beetje snel gebeuren, want al 10 april komt BepiColombo op slechts 12.700 km afstand langs Aarde. BepiColombo maakt die passage onderweg naar de planeet Mercurius om extra snelheid te krijgen van het Aardse zwaartekrachtveld. Ook vliegt BepiColombo een tijdje in de schaduw van de Aarde en het is de eerste keer dat het ruimteschip geen direct zonlicht opvangt.

Maar liefst 21 satellieten worden in een standby modus gebracht, waaronder twee Mars orbiters, de gloednieuwe Solar Orbiter en de vier Cluster satellieten. In deze standby modus worden alleen kritieke taken ondernomen om de ruimteschepen in leven en op koers te houden. Ondertussen werkt ESA aan maatregelen zodat een groot aantal van taken rond het beheer van deze missies vanaf thuis uitgevoerd kunnen worden.

BepiColombo_flight_control_team_take_flyby_selfie_pillars.jpg
Het vluchtleidingscentrum in Darmstadt tijdens de flyby van BepiColombo (foto: ESA)

Op tijd voor de flyby van BepiColombo is alles in stelling. Slechts een kleine bemensing is rond 10 april daadwerkelijk in het ESOC vluchtleidingscentrum aanwezig. En het werk wat men gepland heeft kan zo doorgaan. Onder andere wil ESA 11 instrumenten aan boord testen aan boord van de Mercury Planetary Orbiter (MPO). Het is deze satelliet, die nog vast zit aan de voortstuwingsmodule en de Japanse Mercury Magnetic Orbiter, die straks in een lage baan rond Mercurius hoge resolutie opnamen zal maken.

BepiColombo_s_last_close-ups_of_Earth_during_flyby_article.gif
Beelden van de Aarde door een van de camera’s van BepiColombo (foto’s ESA)

De maatregelen rond het coronavirus hebben uiteindelijk geen impact op het functioneren van BepiColombo. De hele manouvre loopt succesvol. En zo kan BepiColombo voorlopig weer even verder. Tot de eerste passage langs Venus op 15 oktober 2020.

ESA is niet de enige ruimtevaartorganisatie die vluchtleiders laat thuiswerken. Ook bij het Jet Propulsion Laboratory in Californië zitten sinds kort bestuurders van de Curiosity rover thuis.

PIA23773-16.jpg
De roverbestuurders van Curiosity die thuis werken (foto: NASA/JPL)

 

Bronnen:

http://www.esa.int/Science_Exploration/Space_Science/BepiColombo/BepiColombo_takes_last_snaps_of_Earth_en_route_to_Mercury

http://www.esa.int/Science_Exploration/Space_Science/BepiColombo/ESA_to_conduct_BepiColombo_flyby_amid_coronavirus_crisis

https://www.esa.int/Science_Exploration/Space_Science/ESA_scales_down_science_mission_operations_amid_pandemic

https://www.jpl.nasa.gov/news/news.php?release=2020-070

Coverafbeelding: ESA

Curiosity vindt interessante organische stof met mogelijke biologische oorsprong

Curiosity vond opnieuw een organische stof op Mars: thiofeen. En dit is een interessante stof, want op Aarde vinden we thiofeen in producten die door leven zijn ontstaan, zoals olie en steenkool. Thiofeen hoeft echter niet per se een biologische oorsprong te hebben.

De Rosalind Franklin rover, die dit jaar gelanceerd moet worden, heeft een instrument (de Mars Organics Molecule Analyser) dat uitsluitsel kan geven hierover. Curiosity kan namelijk geen onderscheid maken in chiraliteit van organische moleculen, maar Rosalind Franklin wel.

Veel organische moleculen hebben een links- en rechtshandige versie. Dat is chiraliteit. Leven heeft de neiging om vooral linkshandige aminozuren en rechtshandige suikers te produceren. Vind de Rosalind Franklin dus straks links- en rechtshandige versies van een stof door elkaar, dan heeft leven daar waarschijnlijk niet de hand in gehad. Maar vind ESA’s rover zogenaamde homochiraliteit, dan is dat een duidelijke hint naar biologisch leven.

1920px-Chirality_with_hands.svg.png
Chiraliteit in organische molekulen zijn als de linker en rechter versie van handen.  (Afbeelding: NASA)

Deze vondst van thiofeen werd gedaan in een monster dat Curiosity in 2015 onderzocht. Uiteraard is de rover inmiddels veel verder. De boor doet het nog steeds en onlangs onderzocht Curiosity een nieuw monster. Deze week had de rover een uitdaging: de beklimming van een heuvel genaamd Greenheugh.

Curiosity moest daarbij soms stijgingen van 30 graden overbruggen. Als je er goed over nadenkt, zijn dat geen misselijke klimmen. Dertig graden vertaalt zich naar een stijgingspercentage van 58%. Ter vergelijkin: de steilste weg in de wereld, is (volgens het Guiness Book of World Records) is Ffordd Pen Llech in Harlech in Wales. Die weg gaat op zijn steilst 37,45% omlaag (het is eenrichtingsverkeer). Maar Curiosity wist gisteren zijn veel steilere weg te overbruggen en de top van de heuvel te bereiken, dankzij zijn elektromotoren.

ESeLaN4UYAAg5tC.jpg
De klim van Curiosity naar GreenHeugh pediment. (Foto: NASA/JPL)

Vlak daarvoor maakte Curiosity ook een nieuw panorama met de hoogste resolutie ooit.

Hier is een 360 graden versie van Curiosity’s panorama.

 

Verrassend genoeg bevat het door het Witte Huis voorgestelde NASA budget voor het volgende fiscale jaar geen geld voor Curiosity meer. En ook niet voor de Mars Odyssey orbiter die sinds 2001 in een baan rond Mars draait. En dat ondanks dat de wetenschappelijke missies vorig jaar nog als “uitstekend” werden beoordeeld.

Maar zoals wel vaker kan het Witte Huis wel van alles willen, maar komen dit soort verzoeken niet door het Amerikaanse Congres of Senaat. Zo zou in voorgaande jaren de WFIRST telescoop ook geschrapt worden en ook in het komende budget, maar dit project loopt gewoon door.

 

Bronnen:

https://www.universetoday.com/145280/curiosity-finds-organic-molecules-that-could-have-been-produced-by-life-on-mars/

https://mars.nasa.gov/msl/mission-updates/8624/sols-2696-2698-made-it/

https://www.nasa.gov/feature/jpl/nasas-curiosity-mars-rover-snaps-its-highest-resolution-panorama-yet

https://www.planetary.org/blogs/casey-dreier/2020/fy-2021-pbr-for-planetary-science.html

Coverfoto: NASA/JPL/MSSS via de Planetary Society

 

 

Nieuwe NASA Mars-rover gaat Perseverance heten

NASA’s volgende Mars-rover heette tot vandaag nog gewoon de Mars 2020 rover. Maar sinds vanavond heeft hij Perseverance. Scholieren in de Verenigde Staten konden namen inzenden en de winnaar van de competitie werd vanavond bekend gemaakt.

De Perseverance Mars Rover lijkt als twee druppels water op de Curiosity rover. En dat is met opzet. Door gebruik te maken van reserveonderdelen van Curiosity kon deze rover iets goedkoper worden. Maar Perseverance heeft wel andere instrumenten dan Curiosity. Deze rover gaat dan ook op zoek naar sporen van leven.

20140806_PIXL-example.jpg
De PIXL camera brengt de chemische elementen van gesteenten in kaart. (Foto: NASA)

Op de robotarm zit bijvoorbeeld PIXL (Planetary Instrument for X-Ray Lithochemistry), een röntgencamera die in beeld brengt waar microorganismen zouden hebben kunnen overleven. Een ander instrument op de robotarm, SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) toont waar organische stoffen zijn en welke gesteenten zijn veranderd in waterige omstandigheden.

Mars2020Rover-SHERLOC-20140731.jpg
Perseverance’s SHERLOC instrument gaat organische stoffen makkelijker vinden dan de Curiosity rover.

Net als Curiosity, heeft Perseverance een laser-instrument dat gesteente kan doen verdampen. SuperCam is een upgrade van Curiosity’s ChemCam. SuperCam heeft niet een maar 2 lasers en 4 spectrometers die het verdampte materiaal analyseren op biologische sporen.

Daarnaast heeft Perseverance 23 camera’s (waaronder MastCam-Z, een stereoscopische camera met zoomlens), 2 microfoons en een weerstation. MOXIE (Mars Oxygen ISRU Experiment) gaat proberen kooldioxide in Mars’ atmosfeer om te zetten in zuurstof, iets waar astronauten ooit baat bij zouden kunnen hebben.

20140806_RIMFAX.jpg
RIMFAX, een radarinstrument, kan ijslagen onder de rover in beeld brengen.

En niet te vergeten gaat deze rover een kleine helicopter af zetten die vanuit de lucht gebieden in beeld gaat brengen die Perseverance verder zou kunnen onderzoeken. Tenslotte hebben ook de wielen een upgrade gehad, nadat bleek dat het scherpe gesteente op Mars de wielen van Curiosity doorboorden.

Perseverance moet op 17 juli gelanceerd worden en op 18 februari volgend jaar landen in de Jezero krater. Ook het landingssysteem is nog geavanceerder. De boordcomputer kan de rover veel preciezer neerzetten dan voorheen en eventuele obstakels vermijden.

20160715_Mars2020-Landing-Technique-animated.gif

 

Bronnen:

https://www.nasa.gov/press-release/virginia-middle-school-student-earns-honor-of-naming-nasas-next-mars-rover

https://mars.nasa.gov/mars2020/mission/science/

https://en.wikipedia.org/wiki/Perseverance_(rover)

 

Coverafbeelding: NASA

Mars’ methaan-mysterie blijft en er komt nog een mysterie bij: de zuurstof

Het methaan mysterie op Mars blijft onopgelost. De Curiosity rover detecteerde in juni dit jaar het hoogste percentage methaan in de atmosfeer tot nu toe: 21 deeltjes per miljard deeltjes atmosfeer in een volume (21 ppbv). ESA’s Mars Express satelliet kwam vijf uur later over en kon geen methaan detecteren. Een dag ervoor vloog deze satelliet ook al over en vond toen eveneens geen methaan. Mars Express heeft een detectielimiet van 2 ppbv.

How_to_create_and_destroy_methane_at_Mars_pillars.jpg
Hoe methaan op Mars gemaakt en vernietigd zou kunnen worden (ESA)

ESA’s Trace Gas Orbiter (TGO), de meest gevoelige detector van methaan in een baan rond Mars, kwam een paar dagen voor en een paar dagen na de meting van Curiosity over. TGO heeft een detectielimiet van 0,7 ppbv, maar ook deze vond geen methaan. Hoe dit kan, is nog altijd niet duidelijk.

Curiosity vond er onlangs trouwens nog een mysterie bij: het percentage zuurstof in de atmosfeer. Dat Mars heel weinig zuurstof in de atmosfeer had (0,16%), wisten we al langer. Maar Curiosity was in staat om het percentage met de seizoenen te volgen, net als de methaan. Astronomen hadden gedacht dat de hoeveelheid zuurstof zou stijgen en dalen met het kooldioxide (CO2) gehalte.

mars_seasonal_oxygen_gale_crater.jpg
Door Curiosity gemeten zuustof en methaan percentages (credits: Melissa Trainer/Dan Gallagher/NASA Goddard)

’s Winters vriest het CO2 aan op de poolkappen. ’s Zomers wordt het weer gasvormig en stijgt de luchtdruk. Gedacht werd dat zuurstof gelijk met de kooldioxide zou stijgen en dalen. Maar in de zomer steeg het zuurstofgehalte veel harder dan verwacht mocht worden. In de winter verdween de zuurstof weer. Astronomen hebben nog niet een echt idee hoe dit kan. Mogelijk is er een onbekend chemisch proces gaande. Opvallend is dat het zuurstof en methaan percentage tegelijk lijken te stijgen en dalen.

 

Bronnen:

http://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ExoMars/ESA_s_Mars_orbiters_did_not_see_latest_Curiosity_methane_burst

https://www.nasa.gov/feature/goddard/2019/with-mars-methane-mystery-unsolved-curiosity-serves-scientists-a-new-one-oxygen

 

Coverafbeelding: ESA

Curiosity doet chemische analyses en maakt een selfie

De Curiosity rover is de afgelopen maanden druk bezig geweest met onderzoek naar klei in het gebied waar het nu rijdt. Nu de boor weer gebruikt kan worden om monsters te nemen, heeft Curiosity meerdere monsters aangeboord. Een ervan is in september onderzocht in Curiosity’s lab. En dit monster was zo belangrijk, dat men er een speciaal experiment mee deed.

Curiosity heeft 74 kleine cupjes waarin monsters kunnen worden gebracht. In die cupjes wordt een monster dan verhit en de gassen die er vanaf komen worden vervolgens geanalyseerd. Negen van die cupjes bevatten een vloeibaar oplosmiddel. Hiermee kunnen aminozuren en andere organische stoffen gedetecteerd worden. Dit is pas de tweede keer sinds de landing in 2012 dat zo’n “nat” chemie experiment wordt uitgevoerd. Pas volgend jaar wordt verwacht dat we te horen krijgen wat dit experiment opgeleverd heeft.

Dit gebied waar Curiosity rijdt is dan ook wetenschappelijk zeer interessant. Toen de Gale krater gekozen werd als landingsplaats voor Curiosity, was dat in belangrijk mate om dit gebied met kleigesteenten te onderzoeken. Klei is een materiaal waarin organische stoffen goed in behouden worden.

Na het boren en het onderzoek in het lab, had Curiosity tijd om een selfie te nemen. De foto is een compositie van 57 afzonderlijke foto’s die op 11 oktober met de camera op de robotarm genomen zijn. (Een hogere resolutie versie van 8938 x 11845 is te vinden op de site van JPL).

pia23378-annotated-1041.jpg

 

Bronnen:

https://www.nasa.gov/feature/jpl/new-selfie-shows-curiosity-the-mars-chemist

The Design and Engineering of Curiosity – Emily Lakdawalla.

 

Australisch team vind mogelijke verklaring voor methaan mysterie op Mars

Waarom vond de Curiosity rover veel meer methaan dan de Europese Trace Gas Orbiter (TGO) boven de Gale krater? Een team van Australische wetenschappers denkt een mogelijke reden gevonden te hebben. Curiosity vond vorig jaar 8 keer meer methaan (410 deeltjes per billioen in volume) dan TGO, maar het deed die meting ’s nachts. ’s Nachts vindt er minder convectie (warmtestroming) plaats. Methaan dat uit de grond sijpelt blijft zo in grotere concentratie boven het oppervlak.

Als de zon op komt, dan wordt de convectie aanzienlijk groter. Genoeg om het methaan zodanig te verdunnen in de omliggende atmosfeer om overdag op de lage waarden van TGO uit te komen. De wetenschappers berekenden dat als je rekening houd met convectie, zowel de metingen van Curiosity als TGO kunt verklaren. Er zou dan dagelijks 2,8 kg methaan uit de bodem van de Gale krater omhoog moeten komen om beide waarden op te leveren. Ze denken dat toekomstige metingen van andere lokaties, zoals die van de nog te lanceren Mars 2020 en ESA’s Rosalind Franklin rovers, deze hypothese kan testen.

Bron: https://phys.org/news/2019-08-closer-methane-mystery-mars.html

Coverfoto: JPL/NASA

Curiosity rover meet hoge piek methaan

De Mars Curiosity rover heeft een nieuwe piek van methaan gemeten in de Gale krater. Dat was aanvankelijk niet officieel gecommuniceerd, maar de New York Times heeft dat opgevangen. Gegevens die donderdag en vrijdag binnenkwamen wezen op een piek van 21 ppb (parts per billion). Dat is drie keer de piek die in 2013 gemeten werd en die onlangs geverifieerd werd door Mars Express. Het is wel een voorlopige uitkomst. Er moeten nog allerhande correcties doorgevoerd worden.

Het Curiosity team besloot dit weekend wel onmiddellijk extra methaan metingen te doen. Ook Mars Express kwam net op dezelfde dag van de metingen in zijn baan over de Gale krater. Het zal dus interessant zijn om te zien of deze satelliet de metingen kan bevestigen. Wetenschappers zullen nog wel even bezig zijn om alle gegevens door te werken.

Ondertussen doet Curiosity ook nog metingen aan gesteente dat hele fijne lagen laat zien. Misschien leert dat ons iets over de mate van natte en droge perioden in de vroege geschiedenis op Mars.

Curiosity-MAHLI-Sol-2441-June-19-2019-2.jpg
Het gesteente dat de maan Beauly kreeg laat een fijne gelaagdheid zien.

 

 

Bronnen:

https://www.nasa.gov/feature/jpl/curiosity-detects-unusually-high-methane-levels

http://www.leonarddavid.com/curiosity-mars-rover-outcrop-observations/?fbclid=IwAR3kHFho2mZZJGIWPgXlJzEIVBxSZa8WxKQ_Z_Ju1I1q-TKKbB0xLs_0biE

Curiosity rover onderzoekt gebied met veel klei

Hier op deze blog is het al een tijdje stil rond de Mars-rover Curiosity. Onterecht. Curiosity is onlangs in een gebied terecht gekomen, dat astronomen hoog op hun verlanglijstje hadden staan toen ze de missie voor Curiosity opstelden: een gebied met veel klei. Klei vormt vrijwel altijd bij aanwezigheid van water. En Curiosity heeft een lab aan boord waarmee aangeboorde monsters van die klei onderzocht kunnen worden.

Curiosity heeft twee keer een monster aangeboord. De eerste keer op een steen die de naam “Aberlady” kreeg. Maar de boor zorgde ervoor dat de steen opgetild werd. Omdat het team niet zeker was of het monster wat ze verkregen hadden van de steen was of het zand eronder, gooiden ze het monster weg en probeerden het een tweede keer.

aberlady-before-and-after.gif
Het resultaat van de boorpoging op de steen genaamd “Aberlady”. Animatie gemaakt door Emily Lakdawalla.

Dit monster, geboord van een nabijgelegen steen genaamd “Kilmarie”, was wel goed en is inmiddels onderzocht in het lab (Sample Analysis at Mars). Het kost nog wel even tijd voor we de resultaten van die analyse te horen krijgen.

 

 

 

 

20190528_sol2410_clouds2.gif
Een animatie van lichtende nachtwolken gefotografeerd op sol 2410 (18 mei 2019) en gemaakt door Justin Coward.

Curiosity is zich niet alleen aan het richten op de grond, maar ook op de lucht. Het heeft lichtende nachtwolken gefotografeerd. Vanuit Nederland kunnen rond deze tijd soms (Aardse) lichtende nachtwolken gezien worden. Het zijn wolken op grote hoogte (70-80 km) die onder speciale condities vormen. Curiosity heeft ze eerder waargenomen op Mars. Om ze te fotograferen is wel 10 tot 70 seconden sluitertijd nodig, vandaar dat ze wat spectaculairder lijken.

20190410_2356MH0007210010804566C00_DXXX_stitch_scalebar.jpg
Een mozaiek van afgeronde kiezeltjes gemaakt op sol 2356 (24 maart 2019) van een gebied genaamd Glen Torridon. De opmerkelijk afgeronde steentjes wijst erop dat er behoorlijk wat water gestroomd moet hebben. Foto bewerkt door Emily Lakdawalla.

 

Bronnen:

http://www.planetary.org/blogs/emily-lakdawalla/2019/curiosity-update-sols-2313-2387.html

https://www.nasa.gov/feature/jpl/nasas-curiosity-mars-rover-finds-a-clay-cache

http://www.planetary.org/blogs/emily-lakdawalla/2019/curiosity-noctilucent-clouds.html

Curiosity filmde zonsverduisteringen op Mars

Zonsverduisteringen komen ook op Mars voor. Of misschien moet je het “maansovergangen” noemen. Want in tegenstelling tot een totale zonsverduistering door onze maan, zijn Phobos en Deimos niet groot genoeg om de zon te bedekken. Je zult er dan ook geen corona zien, zoals dat bij totale zonsverduisteringen op Aarde wel het geval is.

PIA23133
De zonsverduistering door Phobos.
PIA23134.gif
De verduistering door Deimos.

Hoe dan ook, vorige maand filmde de Curiosity rover de overgangen van Phobos op 26 maart (of sol 2359) en Deimos op 17 maart (of sol 2350). En dat leverde meer dan mooie plaatjes op. Op deze manier kunnen ook de banen van beide manen bepaald worden. Je zou denken dat die goed genoeg bekend zijn, maar door invloeden van de zwaartekracht van Mars, Jupiter en beide manen op elkaar veranderen die steeds een klein beetje.

Phobos is twee-en-half keer zo klein als Deimos, maar Deimos staat veel verder van Mars. Daarom

Ook filmde een van de navigatie camera’s de schaduw van Phobos. Je ziet wel dat het donkerder wordt.

PIA23135.gif

Dit was overigens niet de eerste keer dat een verduistering van de zon op Mars gezien werd. In 2004 fotografeerde Opportunity een overgang van Phobos en in 2013 zag Curiosity Phobos eveneens voor de zon gaan.

 

Bronnen:

https://www.jpl.nasa.gov/news/news.php?feature=7366

Mars Express bevestigt vondst methaan door Curiosity

In juni 2013 detecteerde de Mars rover Curiosity een piek in het methaan gehalte in de atmosfeer. ESA’s Mars Express heeft deze piek nu bevestigt. Hiervoor is oude data van Mars Express’ Planetary Fourier Spectrometer (PFS) met nieuwe methoden verwerkt, zodat het methaan signaal beter zichtbaar is. Een dag nadat Curiosity zijn meting deed, kwam Mars Express over hetzelfde gebied.

De hoeveelheid gemeten methaan is heel laag. Mars Express mat 15 deeltjes per miljard (qua volume). Maar dat zou betekenen dat er die dag 46 ton methaan aanwezig was in het geobserveerde gebied van 49.000 vierkante kilometer. Tien andere observaties van Curiosity konden niet door Mars Express gedetecteerd worden. Mogelijk omdat de hoeveelheid onder de detectiegrens lag.

Mars_Express_matches_methane_spike_measured_by_Curiosity.jpg

De wetenschappers van het PFS instrument denken dat de methaan vrij gekomen is door kleine scheuren in het permafrost. In het oosten van de Gale krater, waar Curiosity is, is een gebied waar waterijs niet ver onder de oppervlakte ligt. Tijdens de zomer zou het vrij kunnen komen. Dit methaan zou nog steeds geologisch van oorsprong kunnen zijn, of restanten van door leven gemaakt methaan dat lang in of onder het ijs opgeslagen lag. De hoop is dat ESA’s Trace Gas Orbiter (TGO) meer inzicht kan geven. Deze kan methaan veel gevoeliger waarnemen. Tot nu toe vond TGO echter nog niets.

http://www.esa.int/Our_Activities/Space_Science/Mars_Express/Mars_Express_matches_methane_spike_measured_by_Curiosity