ESA gaat asteroïdemissie Hera bouwen

ESA heeft goedkeuring gekregen voor de asteroïdemissie Hera. Hera is onderdeel van AIDA (Asteroid Impact and Deflection Assessment), een samenwerkingsverband met NASA. NASA’s deel van dit project is DART (Double Asteroid Redirection Test). DART zal op 22 juli 2021 gelanceerd worden op een Falcon 9 naar de asteroïde Didymos en zijn maan (officeel Dimorphos, maar vaak Didymoon genoemd). De dan 300 kg zware DART wordt op een ramkoers met Dimorphos/Didymoon gebracht en zal op 22 september 2022 inslaan.

Het doel hiervan is om te testen of het mogelijk is om een asteroïde die de Aarde gaat raken van zijn pad af te laten wijken. Didymos en Dimorphos zijn geen bedreiging voor ons. De impact gaat daar niets aan veranderen. Dimorphos, een 163 meter groot object, draait momenteel in 12 uur rond Didymos (780 meter groot). De verwachting is dat de impact de omlooptijd van Dimorphus 10 minuten zal versnellen (en komt in een kleinere baan rond Didymos). Deze wijzigingen van de baan van Dimorphus worden vanaf observatoria op Aarde onderzocht.

Hera moet in 2024 gelanceerd worden op een Ariane 6 raket. Eind 2026 komt Hera aan bij Didymos en Dimorphus. Hera gaat Dimorphus van dichtbij onderzoeken. Uiteraard zal speciale aandacht uit gaan naar de nieuwe inslagkrater, maar ook naar de massa van de maan. Zo weten we precies hoe effectief zo’n inslag is, mocht er ooit een asteroïde op ons af komen.

Met Hera gaan ook twee cubesats mee. Een ervan, APEX (Asteroid Prospection Explorer), heeft spectrale camera’s om de samenstelling vast te stellen en hij gaat magnetische waarnemingen doen. Daarna probeert APEX op Dimorphus te landen. Juventas gaat Dimorphus onderzoeken met lage frequentie radar, waarmee we de binnenkant van Dimorphus kunnen onderzoeken. Ook Juventas zal na pakweg 6 maanden proberen te landen en dan vanaf het oppervlak verdere metingen doen.

Bronnen:

https://www.esa.int/Safety_Security/Hera/Industry_starts_work_on_Europe_s_Hera_planetary_defence_mission

https://en.wikipedia.org/wiki/Double_Asteroid_Redirection_Test

https://en.wikipedia.org/wiki/AIDA_(mission)#Hera

Coverfoto: ESA – Science Office

‘Oumuamua bestond mogelijk uit waterstofijs

Het eerste interstellaire object 1I/’Oumuamua heeft sinds zijn bezoek aan ons zonnestelsel in 2017 behoorlijk wat vragen opgeroepen. Het had geen coma, zoals kometen, maar wel de langwerpige vorm van een komeetkern. Vreemd was ook dat ‘Oumuamua een traject volgde, dat niet op grond van alleen zwaartekracht verklaard kon worden. Het versnelde enigszins.

Er werden allerlei suggesties gedaan voor ‘Oumuamua’s vreemde traject en voorkomen. Zo was er een wetenschappelijk artikel dat zei dat je niet kon uitsluiten dat het geen buitenaards zonnezeil was. Maar er waren ook serieuzere pogingen om het gedrag van dit interstellaire object te verklaren.

‘Oumuamua’s traject door ons zonnestelsel. (Credits: nagualdesign; Tomruen op Wikimedia, https://commons.wikimedia.org/w/index.php?curid=64505953)

Een suggestie was dat ‘Oumuamua een “splinter” is geweest van een gefragmenteerde planeet. Een ander artikel stelde voor dat ‘Oumuamua een heel lage dichtheid heeft, nog lager dan die van een sneeuwvlok. Dat zou betekenen dat je weinig uitgassende stoffen nodig hebt om het object enigszins te versnellen. Maar al deze verklaringen hebben toch hun problemen.

Een nieuw artikel bouwt voor op eerder bewijs dat ‘Oumuamua toch een komeet is. Alleen dan een komeet die voor een belangrijk deel uit moleculair waterstof (H2) bestaat. Moleculair waterstof bevriest bij -259.14 °C, ofwel 14 graden boven het absolute nulpunt. Als het sublimeert (van ijs gasvormig wordt), is de pluim daarvan heel moeilijk of niet detecteerbaar met telescopen. Dat zou betekenen dat als het waterstof sublimeerde, dit ‘Oumuamua een onzichtbaar zetje gegeven kan hebben.

Het zou ook de sigaarvorm van ‘Oumuamua kunnen verklaren. De auteurs van dit artikel denken dat het object voor zijn bezoek aan ons zonnestelsel veel groter was, maar dat het door de warmte van de zon snel slonk. En net als bij kometen bleef een langwerpiger object over na de passage. Jammer genoeg werd ‘Oumuamua pas ontdekt toen het het zonnestelsel al verliet. Dit is zeker iets om op te letten als er weer zo’n object ons zonnestelsel benadert.

Hoe de vorm van ‘Oumuamua veranderde bij passage langs ons zonnestelsel

Maar waar komen deze objecten dan vandaan? De auteurs denken dat grote moleculaire wolken in onze Melkweg koud genoeg zijn en voldoende dichtheid hebben om zulke objecten met bevroren waterstof te vormen. Het zou het meest oude materiaal zijn in onze Melkweg. Het zou zeker de moeite waard zijn om zulk materiaal van dichtbij te bekijken, bijvoorbeeld met ESA’s nog te bouwen Comet Interceptor.

Bronnen:

https://www.universetoday.com/146360/interstellar-oumuamua-was-a-dark-hydrogen-iceberg/

https://arxiv.org/pdf/2005.12932.pdf

https://www.nationalgeographic.com/science/2020/04/perplexing-interstellar-object-starts-revealing-its-secrets/

https://www.syfy.com/syfywire/no-oumuamua-is-not-an-alien-spaceship-it-might-be-even-weirder

https://skyandtelescope.org/astronomy-news/oumuamua-sped-up-as-it-left-the-inner-solar-system-this-might-be-why

Coverfoto: ESA/Hubble, NASA, ESO, M. Kornmesser

Asteroïde Ryugu is poreus en mogelijk afkomstig van zeer oud object

De asteroide Ryugu die door de Japanse missie Hayabusa-2 is bezocht, blijkt te bestaan uit zeer primitief materiaal van het begin van ons zonnestelsel. Met een infrarood camera was te zien dat gesteente op het 1 km grote object snel opwarmt als het in de zon komt. Dat wijst erop dat het erg poreus is. Er is zogezegd weinig dat opgewarmd moet worden.

En dat geldt voor de meeste rotsblokken op het oppervlak. Slechts 1 procent blijft kouder, net zoals we gewend zijn bij de meeste meteorieten die op Aarde gevallen zijn. Van koolstofhoudende asteroïden, zoals Ryugu, valt er ook wel eens wat naar Aarde, maar de metingen van Hayabusa 2 laten zien waarom daar zelden iets van op het oppervlak terecht komt. Dat komt omdat rotsen van Ryugu vrij broos zijn. Ze overleven simpelweg de tocht door onze atmosfeer niet.

Met de Duits-Franse MASCOT lander, die Hayabusa-2 afwierp, konden die poreuze rotsen nog eens van dichtbij onderzocht worden. MASCOT had een radiometer bij zich waarmee dit beeld nog eens bevestigd werd.

mascot-investigated-region-on-ryugu.jpeg
Een foto gemaakt door de MASCOT lander. In rood is het gebied wat gemeten is met MASCOT’s radiometer. De gele pijl toont de richting waar het zonlicht vandaan kwam. (Foto: MASCOT/DLR/JAXA)

Toen het zonnestelsel vormde, klonterde stof in de stofschijf samen tot zogenaamde planetisimalen. En daaruit ontstonden de planeten. Wat nu wel duidelijk is, is dat Ryugu is ontstaan uit een oudere asteroïde die vernietigd werd door een inslag. Dat oorspronkelijke object zou wel eens zo’n planetisimaal geweest kunnen zijn.

Hayabusa-2 is ondertussen op weg om monsters van Ryugu af te leveren op Aarde. Wetenschappers zullen blij zijn dit oude materiaal te kunnen onderzoeken. In december moet de capsule met monsters landen in Australië.

Bronnen:

https://www.dlr.de/content/en/articles/news/2020/01/20200316_asteroid-ryugu-likely-link-in-planetary-formation.html

Coverfoto: Hoe we nu denken dat Ryugu is ontstaan. Afbeelding: Okada et al.

Asteroïde Ryugu heeft een complexe historie achter zich

Hayabusa-2 is sinds afgelopen week op weg naar Aarde met een belangrijke buit: monsters van de asteroïde Ryugu. Maar ook bij Ryugu verrichtte de Japanse missie wetenschap. Het fotografeerde de 860 meter grote asteroïde van alle kanten.

2019_11_13_01-1.jpg

Astronomen zijn vervolgens inslagkraters gaan tellen. Inslagkraters kunnen een hoop zeggen over de geschiedenis van een hemellichaam. Het vinden van alle kraters vinden was wel lastig. Kraters op Ryugu zijn niet zo duidelijk als op bijvoorbeeld de maan. Dat komt omdat Ryugu niet een keiharde rots is, maar eerder een bij elkaar gekomen poreus hoopje puin. En het absorbeert de inslagen van meteorieten daarom vrij goed. En dit laat uiterst vage inslagkraters achter.

2019_11_13_01-2.jpg
Alle 77 gevonden kraters op Ryugu (Kobe University)

Maar er vielen toch wat zaken op. Zo zijn er beduidend meer kraters aan de oostkant van Ryugu, dan aan de westkant. Ook de polen hebben veel minder kraters. Ryugu heeft ook een duidelijke kam over de evenaar en ook de westkant hiervan bevat veel minder kraters.

Vermoed wordt dat Ryugu vroeger veel sneller om zijn as draaide: eens per 3 uur in plaats van de 7,6 uur nu. En daardoor hebben landverschuivingen plaats gevonden richting de westkant. De kraters zijn daardoor bedekt geraakt.

De equatoriale kam is bovendien iets gedraaid ten opzichte van de evenaar. Dit wijst erop dat de polen verplaatst zijn. Dit kan door een inslag gebeurd zijn. Al met al heeft Ryugu een complexe geschiedenis achter de rug. Een geschiedenis waarover we nog veel meer gaan leren als de monsters binnen zijn.

 

Op de dag dat Hayabusa-2 Ryugu verliet was het trouwens 5 jaar geleden sinds de lancering van de missie.

 

Bronnen:

https://www.kobe-u.ac.jp/research_at_kobe_en/NEWS/news/2019_11_27_01.html

https://phys.org/news/2019-11-impact-crater-analysis-ryugu-asteroid.html

https://www.sciencedirect.com/science/article/abs/pii/S0019103519303641

Coverfoto: Kobe University